Bioorganic & Medicinal Chemistry

Bioorganic & Medicinal Chemistry 12 (2004) 1895-1904

Structure–activity studies for a novel series of tricyclic dihydropyridopyrazolones and dihydropyridoisoxazolones as K_{ATP} channel openers

Irene Drizin,* Robert J. Altenbach, Steven A. Buckner, Kristi L. Whiteaker, Victoria E. Scott, John F. Darbyshire, Venkata Jayanti, Rodger F. Henry, Michael J. Coghlan, Murali Gopalakrishnan and William A. Carroll

Neuroscience Research, GPRD, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064-6101, USA

Received 17 November 2003; accepted 26 January 2004

Abstract—In search of a novel chemotype of K_{ATP} channel openers a series of tricyclic dihydropyridopyrazolones and dihydropyridoisoxazolones was synthesized. It was found that cyclopentanone in the left hand portion of the molecule was 4-fold more potent than cyclohexanone. Introduction of gem-dimethyl groups as well as incorporation of oxygen in the cyclohexanone ring in the left hand portion of the molecule increased the potency 10-fold. In the right hand portion of the molecule, the NH-group of the pyrazolone can be effectively substituted by oxygen increasing the activity 5-fold. Incorporation of a methyl group adjacent to the dihydropyridine (DHP) nitrogen not only significantly boosted activity, but also provided an additional benefit of increased metabolic stability. In vitro tests on the tissue from pig bladder strips provided further confirmation of K_{ATP} activity of these compounds.

© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Potassium channels play an important role in regulating cell membrane excitability, action potential generation and epithelial electrolyte transport. K_{ATP} channel openers are amongst the most widely explored channels modulators with regard to their potential for the treatment of various diseases such as bladder overactivity.¹

K_{ATP} channels exist in the bladder and the ability of potassium channel openers (KCO's) to hyperpolarize cells and relax smooth muscle may provide a method for controlling bladder overactivity. Since a clinical study with cromakalim indicated potential usefulness of KCO's for this application, newer generation of K_{ATP} channel openers such as ZM244085, ¹ ZD6169²⁻⁴ and WAY 133536^{5,6} are reported to have enhanced bladder selectivity (Chart 1).

Continued SAR investigation around our previously disclosed series of tricyclic dihydropyridines⁷ focused on a new chemotype with pyrazolone and isoxazolone serving as isosteres of a lactam or a lactone ring (Chart 2). SAR studies on this novel series examined the effects of aromatic substitution as well as modifications of the left- and right-hand portions of the molecule.

Chart 1.

0968-0896/\$ - see front matter \odot 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2004.01.038

^{*}Supplementary data associated with this article can be found, in the online version at, 10.1016/j.bmc.2004.01.038

^{*}Corresponding author. Fax 1-847-935-5466; e-mail: irene.drizin@abbott.com

Chart 2.

Compounds were evaluated in cell and tissue-based invitro models.

A common property of many dihydropyridine-containing molecules is a susceptibility to CYP3A4 mediated oxidation to the pyridine.^{8,9} The tricyclic pyrazolones and isoxazolones described herein offered the potential to increase the metabolic stability by introduction of substituents that sterically hinder access to the dihydropyridine nucleus as well as change the electronic environment of the core. This new series of compounds was tested for its metabolic stability in pooled human liver microsomes and showed superior metabolic stability compared to the reference standards.

2. Chemistry

A series of tricyclic dihydropyridopyrazolones and dihydropyridoisoxazolones was synthesized using the three

$$\begin{array}{c} \text{F} \\ \text{CHO} \\ \textbf{2} \\ \\ \textbf{4a} \ \text{X} = \text{NH}, \ R_2 = \text{H} \\ \textbf{4b} \ \text{X} = \text{NH}, \ R_2 = \text{CH}_3 \\ \textbf{4c} \ \text{X} = \text{NH}, \ R_2 = \text{C}_{2} \text{H}_{5} \\ \textbf{4d} \ \text{X} = \text{NH}, \ R_2 = \text{t-butyl} \\ \textbf{4e} \ \text{X} = \text{NH}, \ R_2 = \text{t-butyl} \\ \textbf{4e} \ \text{X} = \text{NH}, \ R_2 = \text{2-pyridyl} \\ \textbf{4e} \ \text{X} = \text{NH}, \ R_2 = \text{2-pyridyl} \\ \textbf{4f} \ \text{X} = \text{N-phenyl}, \ R_2 = \text{H} \\ \textbf{4g} \ \text{X} = \text{NCH}_3, \ R_2 = \text{H} \\ \textbf{5} \ \text{X} = \text{O}, \ R_2 = \text{CH}_3 \\ \end{array}$$

Scheme 1. Conditions and reagents: (a) EtOH, reflux.

component Hantzsch reaction as shown on Scheme 1. A mixture of aldehyde 2, 1,3-cyclopentanedione 3, and 5amino-3-pyrazolones 4a-g^{10,11} was heated at reflux in EtOH to yield the desired dihydropyridopyrazolones 6a-g. Dihydropyridoisoxazolones 7 were obtained by substituting 4 for 3-amino-5-isoxazolone 5^{12} in this reaction. Variations in the aromatic substitution were introduced by replacing of 2 with a variety of aldehydes, either commercially available or synthesized by the methods described in the literature. Variations of the left hand portion of the molecule were accomplished by substituting 1,3-cyclopentanedione 3 in the Hantzsch reaction with the different cyclic diketones, available from commercial sources or synthesized in accordance with the literature methods. Thus, use of 1,3-cyclohexanedione afforded pyrazolone 16 and isoxazolone 24, and use of 4,4-dimethyl-1,3-cyclohexanedione in the Hantzsch reaction yielded pyrazolone 17 and isoxazolone 25. Introduction of heteroatoms in the left hand portion of the core was realized by substituting 1,3-cyclopentadione 3 with 2H-pyran-3,5(4H,6H)-dione¹³ to yield $\hat{\bf 21}$ and $\hat{\bf 28}$ or δ -lactone $\hat{\bf 14}$, 15 to obtain $\hat{\bf 20}$. Replacement of carbonyl groups with sulfone groups was accomplished by substituting 1,3-cyclopentanedione 3 in the Hantzsch reaction with tetrahydrothiophene-3-oxo-1,1-dioxide¹³ to yield **14** and tetrahydrothiopyran-3-one-1,1-dioxide¹⁶ to afford **15**. Lactone derivatives **13** and 23 were synthesized by a two-step sequence outlined in Scheme 2. The Hantzsch reaction was performed with the ester 11,17 aldehyde 2 and aminopyrazolone 4b to yield the bicyclic dihydropyridine 12, that in turn was cyclized to the desired lactone 13. A similar sequence was used for the synthesis of lactone isoxazolone 23.

Resolution of racemic dihydropyridopyrazolones could not be accomplished directly because of the poor solubility and high polarity of these compounds. Boc-derivatives of these compounds also were not amenable to chiral separation. Acetylation of **6b** yielded predominantly *O*-acetyl derivative **8** that was separated on a Chiracel OJ column. The resolved *O*-acetyl intermediates were cleaved under acidic conditions to the desired enantiomers **9** and **10** (Scheme 3). A similar strategy was applied to the separation of racemic pyrazolone **17**. Racemic dihydropyridoisoxazolones **25** and **28**, being more soluble, could be resolved on Chiracel AS column without prior derivatisation.

The absolute stereochemistry of dihydropyridoisoxazolones 26, 27, 28, and 29 was determined by X-ray

Scheme 2. Synthesis of lactone analogues. Conditions and reagents (a) EtOH, reflux, (b) K₂CO₃, MeOH.

Scheme 3. Resolution of enantiomers. Conditions and reagents: (a) acetic anhydride, reflux; (b) Chiracel OJ column hexane:EtOH (3:1); (c) MeOH, 6N HCl.

crystallography. Similar analysis of dihydropyridopyrazolones 9, 10, 18, and 19 was not possible, since we failed to grow crystals large enough to be analyzed.

3. Results and discussion

Compounds were assayed for their activity as K_{ATP} openers using primary cultured guinea pig bladder cells. The SAR study reported here was focused on the following issues (i) study of the spatial and electronic limitations of the right hand portion of the molecule, (ii) tolerance to variations of the left hand portion of the molecule, (iii) effects of the substituents on the aromatic ring.

The initial effort was directed at improving the potency of $\bf 6a$ by modification of the right hand portion of the molecule. As is evident from Table 1, introduction of a methyl group adjacent to the dihydropyridine nitrogen $\bf (6b)$ resulted in a very significant increase in activity. Further expansion of the steric bulk around that region revealed limitations of that pocket. Incorporation of an ethyl group as in $\bf 6c$ was still tolerated, but introduction of $\it t$ -butyl or aromatic and heteroaromatic groups $\bf (6d-f)$ in this region resulted in a complete loss of activity. Interestingly, moving the methyl group to the nitrogen adjacent to carbonyl group $\bf (6g)$ was detrimental for activity. (In parallel SAR studies $\bf X = NMe$ and $\bf R_2 = Me$ was found to be an allowed substitution pattern on the core with the left hand piece from example $\bf 21$). Oxygen

Table 1. SAR of the right-hand side of the tricyclic dihydropyridines

Compd	X	R_2	EC ₅₀ (μM) ^a
6a	NH	Н	2.77 ^b
6b	NH	CH_3	0.55
6c	NH	C_2H_5	0.27^{b}
6d	NH	t-butyl	> 10
6e	NH	2-pyridyl	> 10
6f	N-phenyl	NH	$> 10^{b}$
6g	N-CH ₃	H	> 10
7	O	CH_3	0.071

^a Values are means of three experiments.

in the same position yielded a very potent compound 7, when $R_2 = CH_3$.

We further focused our efforts on the optimization of the left hand portion of the two promising leads **6b** and 7. SAR for both classes of compounds (Table 2) is

Table 2. SAR of the left hand side of the tricyclic dihydropyridines

A	X = NH	EC ₅₀ (μM) ^a	X = O	EC ₅₀ (μM) ^a
$\overline{\Diamond}$	6b	0.55	7	0.071
	(-)9	0.59		
Š	(+)10	> 10		
	13	0.35	23	0.013
	14	>10	_	
0,20	15	> 10	_	
	16	1.97 ^b	24	2.30
	17	0.18	25	0.13
	(+)18	0.18	(R)(+) 26	0.11
	(-)19	>10	(S)(-) 27	> 10
	20	1.14		
	21	0.19	28	0.13
	_	_	(S)(-) 29	0.25 ^b
	_	_	(R)(+)30	0.025

^a Values are means of three experiments.

^bValues are means of two experiments.

^bValues are means of two experiments.

Table 3. SAR of the aromatic substitution of the dihydropyridopyrazolones

Compd	R	EC ₅₀ (μM) ^a
6b	3-Br, 4-F	0.56
31	4-OCF ₃	> 10
32	3-Br, 4-CH ₃	0.48^{b}
33	3-CF ₃ , 4-F	0.69^{b}
34	3-NO ₂ , 4-Cl	2.3 ^b
35	3-I, 4-F	0.32^{b}
36	3,4-diCl	$0.67^{\rm b}$
37	N-O, N	>10

^a Values are means of three experiments.

almost identical. It was shown that cyclopentanone, as a left hand portion of the molecule (6b and 7), is more potent than cyclohexanone (16 and 24). Surprisingly, introduction of gem-dimethyl groups in the cyclohexanone ring (17 and 25) restored potency to the level of 6b and 7. Incorporation of oxygen in the cyclohexanone ring (20, 21 and 28) also had a favorable effect, that was particularly pronounced with 21 and 28. Oxygen was also well tolerated in the cyclopentanone rings (13 and 23). Replacement of the carbonyl group in the ring 40 with sulfone (14 and 15) resulted in a complete loss of activity. Resolution of enantiomers (9, 10, 18, 19, 29, and 30) showed that absolute stereochemistry was critical for K_{ATP} activity as activity resided predominantly with one enantiomer.

Further elucidation of structural and electronic limitations of the pharmacophore was accomplished by exploring the effect elicited by changes in aromatic substitution. SAR for the core structure of **6b** is summarized in Table 3. As was previously established for other dihydropyridine KCO's, monosubstitution with OCF₃ group (**31**) results in a loss of activity. 3, 4-Disubstituted compounds, in particular, di-halogen compounds (**6b**, **35**, and **36**) were more potent. The 3-Br group could be replaced with 3-CF₃ as in **33** or I as in **35** with the retention of potency. The 4-F group could be replaced by 4-CH₃, as in **32**, without adverse effect on activity. However, the oxadiazole group in **37** and 3-NO₂, 4-Cl pattern in **34** had unfavorable effect on the potency of compounds.

Similar studies of the aromatic substitution SAR for the core structure 7 are summarized in Table 4. For the most part SAR for core structures **6b** and **7** is parallel. There are a few exceptions, however, for example, 3-Br group could not be replaced with the 3-CF₃ group (**39**) with the retention of potency, and for the core structure **7** both 3-NO₂, 4-Cl (**40**) and oxadiazole (**43**) moieties were well tolerated as a replacement for 3-Br, 4-F-pattern.

Table 4. SAR of the aromatic substitution of the dihydropyridoisoxazolones

Compd	R	EC ₅₀ (μM) ^a
28	3-Br, 4-F	0.13
38	3-Br, 4-CH ₃	0.21
39	3-CF ₃ , 4-F	3.24 ^b
40	3-NO ₂ , 4-Cl	0.099
41	3-I, 4-F	0.057
42	3-CN	> 10
43	N-Q N-Q N-Q	0.023

^a Values are means of three experiments.

The more potent compounds representing both dihydropyridopyrazolones and dihydropyridoisoxazolones were also evaluated in vitro using tissue strips obtained from Landrace pig bladders. The results of this study are presented in Table 5. All of the compounds exhibit activity comparable to cromakalim.

An interesting property of this series of compounds was discovered with the evaluation of their metabolic stability. As is known from the literature, dihydropyridines as a class of compound are subject to rapid metabolism catalyzed by the cytochrome P450(CYP) 3A4 isoform. Shown in Table 6 are metabolism results for a selection of compounds compared with a structural analogue

Table 5. Functional KCO activity in isolated bladder strips

Compd	pEC ₅₀ ^a
Cromakalim	6.34
6b	6.14
13	6.46
17	6.68
21	6.52
24	6.35
23	6.71

^a Efficacy(%P1075)>90%.

Table 6. Metabolic stability in human microsomes

Compd	% Compound remaining
Nifedipine	17
Felodipine	23
1c	20
17	95
21	92
6b	90
35	98
27	92
23	86
13	83
6c	86

^bValues are means of two experiments.

^bValues are means of two experiments.

from previous work 1c and the calcium channel antagonist standards: nifedipine and felodipine. As is evident from data introduction of the methylpyrazolone and methyloxazolone in the scaffold not only increased potency, but also imparted greater metabolic stability for these compounds. It is especially evident when comparing the metabolic stability of tricyclic lactone 1c to compounds 6b and 17. This can be explained by a steric and electronic effects of groups adjacent to the dyhydropyridine nitrogen.

In summary, we have identified a new class of potassium channel openers. SAR studies on both dihydropyridooxazolones and dihydropyridopyrazolones helped identify compounds that not only exhibited great potency but were also metabolically stable. We examined the effect of the ring size and substituents in the left hand side portion of the molecule as well as established the optimal aromatic substitution for both classes of compounds. We have also demonstrated novel method for the preparation of enantiomers for these structural classes. The obtained compounds were evaluated for $K_{\rm ATP}$ activity in pig bladder strips and they demonstrated activity comparable to cromakalim.

4. Experimental

4.1. Biology

The series of compounds was evaluated for potassium channel opening activity using primary cultured guinea pig urinary bladder (GPB) cells. ¹⁸ Functional activity at potassium channels was measured by evaluating changes in membrane potential using DIBAC dye in a 96-well cell based kinetic assay system, Fluorescent Imaging Plate Reader (FLIPR). Changes in fluorescence were measured and compared to the effect elicited by P1075 — a potent KCO. The effects of all compounds were reversed by glyburide.

In vitro tissue tests were conducted on strips obtained from Landrace pig bladders. Tissues were stimulated by a low frequency current that produced a stable twitch response. P1075 completely eliminated the stimulated twitch response in a dose-dependant fashion. The maximal efficacy of each compound was expressed in comparison to P1075. The amount of agent necessary to cause 50% of the agent's maximal response (EC $_{50}$) was calculated and agonist potencies were expressed as pEC $_{50}$ (the negative logarithm).

4.2. Human liver microsomal incubations

A standard 0.15 mL incubation mixture contained pooled human liver microsomal protein (0.5 mg/mL) in 50 mM phosphate buffer (pH 7.4) and 25 μ M substrate. The microsomes were a mixture of human liver microsomes from eight donors pooled on equal weight basis. Following a 5 min preincubation, reactions were started by the addition of 2 mM NADPH and conducted at 37 °C in a shaking incubator for 30 min. The reaction was stopped by the addition of 100 μ L of a mixture

of MeOH/acetonitrile (v/v 1:1), containing 15 μM nifedipine, an internal standard, followed by vigorous mixing. After protein precipitation and centrifugation a 100 μL aliquot of the supernatant was taken for HPLC analysis.

The compounds and their metabolites were analyzed by reverse phase HPLC. Separation was achieved at room temperature using a YMC C8 column (4.5°150 mm, pore size 5 μm) with a YMC C8 guard column on a Hewlett-Packard 1050 series HPLC system. Elution was conducted at 1 mL/min using a linear gradient of 80–40–20–0–0-60% of 50 mM ammonium acetate buffer, pH 4.0, water and methanol over 40 min. The methanol was increased from 60% to 80% by 47 min. The gradient was ramped back to 80% buffer and 20% water step wise in next 13 min followed by equilibration of 10 min before the next injection. The parent and metabolites were detected using an Applied Biosystems UV detector at a wavelength of 346 nM.

4.3. Chemistry

Proton NMR spectra were obtained on a General Electric QE 300 or QZ 300 MHz instrument with chemical shifts (δ) reported relative to tetramethylsilane as internal standard. Melting points were determined on a Thomas-Hoover Capillary Melting Point apparatus and are uncorrected. Elemental analyses were performed by Robertson Microlit Laboratories. Column chromatography was carried out on silica gel 60 (230–400 mesh). Thin-layer chromatography (TLC) was performed using 250 mm silica gel 60 glass-backed plates with F₂₅₄ as indicator. Optical rotations were measured with a Perkin–Elmer 541 Polarimeter. X-ray crystal structures were obtained on a Bruker SMART system.

4.4. General procedure

4.4.1. 4-(3-Bromo-4-fluorophenyl)-1,2,4,6,7,8-hexahydrocyclopenta[*b*]**pyrazolo**[**4,3-***e*]**pyridine-3,5-dione** (**6a**). 5-Amino-1,2-dihydropyrazol-3-one (0.15 g, 1.5 mmol), 3-bromo-4-fluorobenzaldehyde (0.31 g, 1.5 mmol), and 1,3-cyclopentanedione (0.15 g, 1.5 mmol) in EtOH (3 mL) were heated at 80 °C for 2 days in a sealed tube. The reaction mixture was evaporated under reduced pressure and the residue was chromatographed on silica gel eluting with EtOAc:HCO₂H:H₂O (18:1:1) to provide 0.125 g of **6a** as a tan solid. ¹H NMR (DMSO- d_6) δ 2.22 (t, 2H), 2.61 (m, 2H), 4.73 (s, 1H), 7.15 (m, 1H), 7.2 (m, 1H), 7.4 (dd, 1H), 9.75 (s, 1H), 10.21 (s, 1H), 11.3 (bs, 1H); MS (ESI-) m/z 362 (M-H)⁻ Anal. (C₁₅H₁₁N₃BrFO₂·0.5H₂O) C, H, N.

4.4.2. 4-(3-Bromo-4-fluorophenyl)-1-methyl-1,2,4,6,7,8-hexahydrocyclopenta[*b*]**pyrazolo**[**4,3-***e*]**pyridine-3,5-dione (6b).** 5-Amino-1-methyl-1,2-dihydropyrazol-3-one (0.23 g, 2 mmol), ¹⁰ 3-bromo-4-fluorobenzaldehyde (0.4 g, 2 mmol), and 1,3-cyclopentanedione (0.2 g, 2 mmol) in EtOH (4 mL) were treated as described for **6a**. The reaction was cooled and the resulting precipitate was collected to provide 0.6 g (79%) of **6b** as a tan solid. ¹H NMR (DMSO-*d*₆) δ 2.3 (t, 2H), 2.69 (m, 2H), 3.5 (s,

3H), 4.7 (s, 1H), 7.15 (m, 1H), 7.2 (t, 1H), 7.39 (dd, 1H), 9.56 (s, 1H), 10.42(s, 1H); MS (ESI+) m/z 380 (M+H)⁺. Anal. (C₁₆H₁₃N₃BrFO₂·C₂H₆O) C, H, N.

4.4.3. 4-(3-Bromo-4-fluorophenyl)-1-ethyl-1,2,4,6,7,8-hexahydrocyclopenta[*b*]**pyrazolo**[**4,3-e**]**pyridine-3,5-dione (6c).** 5-Amino-1-ethyl-1,2-dihydropyrazol-3-one (0.13 g, 1 mmol), prepared by the method of Weisberger¹¹ from ethylhydrazine and ethyl cyanoacetate, 3-bromo-4-fluorobenzaldehyde (0.2 g, 1 mmol), and 1,3-cyclopentanedione (0.1 g, 1 mmol) were processed as in **6a**. The reaction was cooled and the resulting precipitate was collected to provide 0.23 g (58%) of **6c** as a tan solid. ¹H NMR (DMSO- d_6) δ 1.22 (t, 3H), 2.28 (t, 2H), 2.68 (m, 2H), 3.82 (q, 2H), 4.7 (s, 1H), 7.17 (m, 1H), 7.2 (t, 1H), 7.4 (dd, 1H), 9.64 (bs, 1H), 10.4 (s, 1H); MS (ESI-) m/z 392 (M-H) $^-$. Anal. (C₁₇H₁₅N₃BrFO₂· 0.5H₂O) C, H, N.

4.4.4. 4-(3-Bromo-4-fluorophenyl)-1*-tert*-butyl-1,2,4,6,7,8-**hexahydrocyclopenta**[*b*]**pyrazolo**[4,3-*e*]**pyridine-3,5-dione (6d).** 5-Amino-1-*tert*-butyl-1,2-dihydropyrazol-3-one (0.23 g, 1.5 mmol), prepared by the method of Weisberger¹¹ from *tert*-butylhydrazine and ethyl cyanoacetate, 3-bromo-4-fluorobenzaldehyde (0.3 g, 1.5 mmol), and 1,3-cyclopentanedione (0.147 g, 1.5 mmol) in EtOH (3 mL) were processed as in **6a**. The reaction was cooled and the resulting precipitate was collected to provide 0.12 g of **6d** as a tan solid. ¹H NMR (DMSO- d_6) δ 1.51 (s, 9H), 2.28 (m, 2H), 2.71 (m, 2H), 4.69 (s, 1H), 7.12 (m, 1H), 7.21 (t, 1H), 7.39 (dd, 1H), 9.43 (bs, 1H), 9.57 (s, 1H); MS (ESI-) m/z 420 (M-H)⁻. Anal. (C₁₉H₁₉N₃BrFO₂) C, H, N.

4.4.5. 4-(3-Bromo-4-fluorophenyl)-1-(2-pyridinyl)-1,2,4,6, 7,8-hexahydrocyclopenta|*b*|**pyrazolo|4,3-***e*|**pyridine-3,5-dione (6e).** 5-Amino-1-(2-pyridyl)-1,2-dihydropyrazol-3-one (0.26 g, 1.5 mmol), 11 (3-bromo-4-fluorobenzaldehyde (0.3 g, 1.5 mmol), and 1,3-cyclopentanedione (0.147 g, 1.5 mmol) were processed as in **6a**. The reaction was cooled and the resulting precipitate was collected to provide 0.2 g of **6e** as a tan solid. 1 H NMR (DMSO- 4 6) 8 2.32 (m, 2H), 2.8 (m, 2H), 4.82 (s, 1H), 7.22 (m, 3H), 7.48 (dd, 1H), 7.55 (dd, 1H), 7.92 (t, 1H), 8.41 (m, 1H), 10.42 (s, 1H), 10.55 (bs, 1H); MS (ESI-) $^{m/z}$ 439 (M-H)-. Anal. (2 0+ 1 4+ 1 0+ 1 0- 2 0-25H₂O) C, H, N.

4.4.6. 4-(3-Bromo-4-fluorophenyl)-2-phenyl-1,2,4,6,7,8-hexahydrocyclopenta [*b*]pyrazolo[4,3-*e*]pyridine-3,5-dione (6f). 3-Bromo-4-fluorobenzaldehyde (0.3 g, 1.5 mmol), 1,3-cyclopentanedione (0.15 g, 1.5 mmol), and 5-amino-2-phenyl-1,2-dihydropyrazol-3-one (0.26 g, 1.5 mmol) were processed as in **6a**. The reaction mixture was concentrated in vacuo and the obtained residue was chromatographed on silica gel eluting with 10% EtOH/ CH_2Cl_2 to provide 0.32 g of **6f**. 1H NMR (DMSO- d_6) δ 2.26 (m, 2H), 2.63 (m, 2H), 4.86 (s, 1H), 7.21 (m, 3H), 7.4 (t, 2H), 7.51 (d, 1H), 7.67 (d, 2H), 10.47 (s, 1H), 11.2 (s, 1H). MS (ESI-) m/z 438 (M-H)⁻. Anal. $(C_{21}H_{15}N_3FBrO_2)$ C, H, N.

4.4.7. 4-(3-Bromo-4-fluorophenyl)-2-methyl-1,2,4,6,7,8-hexahydrocyclopenta[*b*]pyrazolo[4,3-*e*]pyridine-3,5-dione **(6g).** 3-Bromo-4-fluorobenzaldehyde (0.3 g, 1.5 mmol),

1,3-cyclopentanedione (0.15 g, 1.5 mmol), and 5-amino-2-methyl-1,2-dihydropyrazol-3-one (0.17 g, 1.5 mmol), prepared by the method of words of Taylor¹⁰ were processed as described in **6a**. The reaction was cooled and the resulting precipitate was collected to provide 0.32 g of **6g**. ¹H NMR (DMSO- d_6) δ 2.21 (t, 2H), 2.59 (m, 2H), 3.38 (s, 3H), 4.75 (s, 1H), 7.13 (m, 1H), 7.2 (t, 1H), 7.42 (dd, 1H), 10.16 (s, 1H), 10.51 (bs, 1H). MS (ESI-) m/z 378 (M-H)⁻. Anal. (C₁₆H₁₃N₃BrFO₂) C, H, N.

4.4.8. 4-(3-Bromo-4-fluorophenyl)-1-methyl-4,6,7,8-tetrahydro - 1*H* **- cyclopenta**[*b*]**isoxazolo**[**4,3 -** *e*]**pyridine - 3,5 - dione (7).** 3-Amino-2-methyl-5(2*H*)-isoxazolone (0.11 g, 1 mmol), 3-bromo-4-fluorobenzaldehyde (0.2 g, 1 mmol), and 1,3-cyclopentanedione (0.1 g, 1 mmol) in EtOH (2 mL) were processed as in **6a**. The reaction mixture was allowed to cool to room temperature and was evaporated under reduced pressure. The residue was chromatographed eluting with EtOAc:HCO₂H:H₂O (19:0.5:0.5) to provide 7 as a tan solid (0.07 g). ¹H NMR (DMSO-*d*₆) δ 2.35 (t, 2H), 2.72 (m, 2H), 3.29 (s, 3H), 4.6 (s, 1H), 7.23 (d, 2H), 7.5 (d, 1H) 11.0 (s, 1H). MS (ESI) *m*/*z* 379 (M−H)⁻. Anal. (C₁₆H₁₂N₃FBrO₃) C, H, N.

4.4.9. 4-(3-Bromo-4-fluorophenyl)-1-methyl-5-oxo-1,4,5, 6,7,8-hexahydrocyclopenta|*b*|**pyrazolo**|**4,3-***e*|**pyridin-3-yl acetate (8).** Dihydropyridopyrazolone **6b** 1 (0.4 g, 1 mmol) was heated on a steam bath in acetic anhydride (5 mL) for 15 min. The reaction mixture was evaporated under reduced pressure and the residue was chromatographed on silica gel eluting with 5% EtOH/CH₂Cl₂ to provide 0.27 g of **8** as white crystals. 1 H NMR (DMSO- d_6) δ 2.35 (t, 2H), 2.36 (s, 3H), 2.74 (m, 2H), 3.35 (s, 3H), 4.59 (s, 1H), 7.25 (d, 2H), 7.55 (d, 1H), 11.0 (s, 1H). MS (ESI-) m/z 423 (M-H)⁻. Anal. (C₁₈H₁₅N₃FBrO₃) C, H, N.

4.4.10. (+) **4-(3-Bromo-4-fluorophenyl)-1-methyl-1,2,4,6, 7,8-hexahydrocyclopenta**[b]**pyrazolo**[**4,3-e]pyridine-3,5-dione (9).** Acetate **8** (0.4 g) was chromatographed on a chiral column (Chiracel OJ 4.6×250 mm using hexane:EtOH (75:25) at 1 mL/min) to provide two enantiomers. The less polar enantiomer had a retention time of 10.9 min (0.174 g). The more polar enantiomer had a retention time of 18.4 min (0.16 g).

The less polar enantiomer (0.17 g) in aqueous MeOH (10 mL) was treated with 6 N HCl (1 mL) and then heated at reflux for 1 h. The reaction mixture was evaporated under reduced pressure and the residue was chromatographed eluting with 15% EtOH/CH₂Cl₂ to provide 0.09 g of 9. [α]²³ + 168.1° (DMSO); ¹H NMR (DMSO- d_6) δ 2.3 (t, 2H), 2.7 (m, 2H), 3.5 (s, 3H), 4.7 (s, 1H), 7.18 (m, 1H), 7.2 (t, 1H), 7.39 (dd, 1H), 9.51 (bs, 1H), 10.42(s, 1H). MS (ESI-) m/z 378 (M-H)⁻. Anal. (C₁₆H₁₃N₃BrFO₂) C, H, N.

4.4.11. (-) **4-(3-Bromo-4-fluorophenyl)-1-methyl-1,2,4,6, 7,8-hexahydrocyclopenta**[*b*]**pyrazolo**[**4,3-***e*]**pyridine-3,5-dione (10).** The more polar enantiomer (0.16 g) in aqueous MeOH (10 mL) was treated with 6 N HCl (1 mL) and then heated at reflux for 1 h. The reaction mixture was evaporated under reduced pressure and the residue

was chromatographed eluting with 15% EtOH/CH₂Cl₂ to provide 0.09 g of **10**. $[\alpha]_D^{23}$ –166.7° (DMSO); ¹H NMR (DMSO- d_6) δ 2.3 (t, 2H), 2.7 (m, 2H), 3.5 (s, 3H), 4.7 (s, 1H), 7.18 (m, 1H), 7.2 (t, 1H), 7.39 (dd, 1H), 9.51 (bs, 1H), 10.42 (s, 1H). MS (ESI-) m/z 378 (M-H)⁻. Anal. (C₁₆H₁₃N₃BrFO₂) C, H, N.

4.4.12. Ethyl 6-[(acetyloxy)methyl]-4-(3-bromo-4-fluorophenyl)-1-methyl-3-oxo-2,3,4,7-tetrahydro-1*H*-pyrazolo-[3,4-*b*]pyridine-5-carboxylate (12). Ethyl 4-(acetyloxy)-3-oxobutanoate 11 (0.19 g, 1 mmol), 17 3-bromo-4-fluorobenzaldehyde (0.2 g, 1 mmol) and 5-amino-1-methyl-1,2-dihydropyrazol-3-one (0.11 g, 1 mmol) in EtOH (3 mL) were heated at 80 °C for 24 h in a sealed tube. The reaction mixture was evaporated under reduced pressure and chromatographed on silica gel eluting with 5% EtOH/CH₂Cl₂ to provide 0.1 g of 12. 1 H NMR (DMSO- d_6) δ 1.03 (t, 3H), 2.1 (s,3H), 3.46 (s, 3H), 3.92 (q, 2H), 4.95 (s, 1H), 5.12 (q, 2H), 7.18 (m, 1H), 7.22 (t, 1H), 7.38 (dd, 1H), 9.43 (s, 1H). MS (ESI-) m/z $468(M-H)^-$.

4.4.13. 4-(3-Bromo-4-fluorophenyl)-1-methyl-4,8-dihydro- 1*H***-furo**[**3,4-***b*]**pyrazolo**[**4,3-***e*]**pyridine-3,5(2***H*,7*H*)**-dione (13).** Diester **12** (0.09 g) and K_2CO_3 (0.03 g) in MeOH (10 mL) were stirred at ambient temperature for 1 h. The solvent was evaporated under reduced pressure and the obtained residue was chromatographed on silica gel eluting with 10% EtOH/CH₂Cl₂ to provide 0.04 g of **13**.

¹H NMR (DMSO- d_6) δ 3.49 (s, 3H), 4.76 (s, 1H), 4.9 (q, 2H), 7.23 (m, 2H), 7.42 (dd, 1H), 9.51 (bs, 1H), 9.78 (s, 1H). MS (ESI-) m/z 378 (M-H)⁻. Anal. (C₁₅H₁₁N₃BrFO₃·0.5 C₂H₆O) C, H, N.

4.4.14. 4-(3-Bromo-4-fluorophenyl)-1-methyl-1,2,4,6,7,8-hexahydro-3*H***-pyrazolo[3,4-***b***]thieno[2,3-***e***]pyridin-3-one 5,5-dioxide (14).** 5-Amino-1-methyl-1,2-dihydropyrazol-3-one (0.17 g, 1.5 mmol), 3-bromo-4-fluorobenzaldehyde (0.3 g, 1.5 mmol), and tetrahydrothiophene-3-oxo-1,1-dioxide (0.2 g,1.5 mmol) were treated as described for **6a.** The reaction was cooled and the resulting precipitate was filtered off to provide 0.41 g of **14** as a tan solid. 1 H NMR (DMSO- d_6) δ 2.88 (m, 1H), 3.03 (m, 1H), 3.4 (m, 2H), 3.48 (s, 3H), 4.92 (s, 1H), 7.21 (m, 1H), 7.24 (t, 1H), 7.4 (d, 1H), 9.55 (s, 1H), 9.89 (s, 1H). MS (ESI-) m/z 414 (M-H)⁻. Anal. (C₁₅H₁₃N₃BrFO₃S) C, H, N.

4.4.15. 4-(3-Bromo-4-fluorophenyl)-1-methyl-3,4,6,7,8-hexahydro-2*H***-thiopyrano[3,2-***b***]pyrazolo[2,3-***e***]pyridin-3-one, 5,5-dioxide (15).** Tetrahydrothiopyran-3-one-1,1-dioxide (0.148 g, 1 mmol), 3-bromo-4-fluoro-benzalde-hyde (0.20 g, 1 mmol), and 5-amino-1-methyl-1,2-dihydropyrazol-3-one (0.11 g, 1 mmol) were processed as in **6a.** The reaction was cooled and the resulting precipitate was collected to provide 0.24 g (46%) of **15** as a tan solid. 1 H NMR (DMSO- d_6) δ 2.21 (m, 2H), 2.6 (m, 2H), 3.12 (m, 2H), 5.05 (s, 1H), 7.18 (m, 2H), 7.21 (t, 1H), 7.49 (d, 1H), 9.3 (s, 1H), 9.55 (bs, 1H). MS (ESI-) m/z 428 (M-H)⁻. Anal. (C_{16} H₁₅N₃BrFO₃S. 0.5 C_{2} H₆O) C, H, N.

4.4.16. 4-(3-Bromo-4-fluorophenyl)-1-methyl-4,7,8,9-tetra-hydro-1*H***-pyrazolo**[3,4-*b*]quinoline-3,5(2*H*,6*H*)-dione **(16).** 3-Bromo-4-fluorobenzaldehyde (0.2 g, 1.0 mmol),

1,3-cyclohexanedione (0.11 g, 1.0 mmol), and 5-amino-1-methyl-1,2-dihydropyrazol-3-one (0.11 g, 1.0 mmol) were processed as described for **6a**. The reaction was cooled and the resulting precipitate was collected to provide 0.27 g of **16**. 1 H NMR (DMSO- d_{6}) δ 1.9 (m, 2H), 2.2 (m, 2H), 2.6 (m, 2H), 3.45 (s, 3H), 4.88 (s, 1H), 7.12 (m, 1H), 7.18 (t, 1H), 7.38 (dd, 1H), 9.53 (s, 1H), 9.72 (s, 1H); MS (ESI-) m/z 390 (M-H)⁻. Anal. (C₁₇H₁₅N₃BrFO₂·C₂H₆O) C, H, N.

4.4.17. 4-(3-Bromo-4-fluorophenyl)-1,6,6-trimethyl-4,7,8,9tetrahydro - 1H - pyrazolo[3,4 - b]quinoline - 3,5(2H,6H) dione (17). 5-Amino-1-methyl-1,2-dihydropyrazol-3-one (0.23 g, 2 mmol), 3-bromo-4-fluorobenzaldehyde (0.4 g, 2 mmol), and 4,4-dimethyl-1,3-cyclohexanedione (0.28 g, 2 mmol) were treated as in 6a to provide after filtration of the reaction mixture 0.55 g of 17 as a tan solid. ¹H NMR (DMSO- d_6) δ 0.92 (s, 3H), 0.98 (s, 3H), 1.78 (t, 2H), 2.63 (m, 2H), 3.43 (s, 3H), 4.83 (s, 1H), 7.11 (m, 1H), 7.17 (t, 1H), 7.33 (dd, 1H), 9.53 (s, 1H), 9.66 (s, 420 1H). MS (ESI-) m/z $(M-H)^{-}$. $(C_{19}H_{19}N_3BrFO_2)$ C, H, N.

4.4.18. (+) 4-(3-Bromo-4-fluorophenyl)-1,6,6-trimethyl-4,7,8,9 - tetrahydro - 1*H* - pyrazolo[3,4 - *b*]quinoline - 3,5-(2*H*,6*H*)-dione(18) and (-) 4-(3-bromo-4-fluorophenyl)-1,6,6-trimethyl-4,7,8,9-tetrahydro-1*H*-pyrazolo[3,4-*b*]-quinoline-3,5(2*H*,6*H*)-dione (19). Compound 17 (0.6 g) in 5 mL of acetic anhydride was heated for 10 min on a steam bath. The reaction mixture was evaporated under reduced pressure and chromatographed on silica gel to provide 0.36 g of 4-(3-bromo-4-fluorophenyl)-1,6,6-trimethyl-5-oxo-4,5,6,7,8,9-hexahydro-1*H*-pyrazolo[3,4-*b*]quinolin-3-yl acetate as a less polar compound.

The intermediate acetate (0.36 g) was chromatographed on a chiral column (Chiracel OJ column $4.6 \times 250 \text{ mm}$ using hexane:EtOH (85:15) at 1 mL/min) to provide two enantiomers. The less polar enantiomer (0.14 g) had a retention time of 7.63 min. The more polar enantiomer (0.14 g) had a retention time of 10.18 min.

The less polar enantiomer (0.14 g), from above, in aqueous MeOH (10 mL) was treated with 6 N HCl (1 mL) and heated at reflux for 2 h. The reaction mixture was evaporated under reduced pressure and chromatographed on silica gel eluting with 10% EtOH/CH₂Cl₂ to provide 0.09 g of **18**. $[\alpha]_D^{23}$ +25.3° (DMSO); ¹H NMR (DMSO- d_6) δ 0.92 (s, 3H), 0.98 (s, 3H), 1.78 (t, 2H), 2.63 (m, 2H), 3.44 (s, 3H), 4.83 (s, 1H), 7.12 (m, 1H), 7.16 (t, 1H), 7.33 (dd, 1H), 9.52 (bs, 1H), 9.63 (s, 1H). MS (ESI-m/z 420 (M-H)⁻. Anal. (C₁₉H₁₉N₃BrFO₂) C, H, N.

The more polar enantiomer from above (0.16 g) was treated with 6 N HCl (1 mL) and then heated at reflux for 1 h. The reaction mixture was evaporated under reduced pressure and the residue was chromatographed eluting with 15% EtOH/CH₂Cl₂ to provide 0.08 g of **19**. [α]_D²³ -23.9° (DMSO). ¹H NMR (DMSO- d_6) δ 0.92 (s, 3H), 0.98 (s, 3H), 1.78 (t, 2H), 2.63 (m, 2H), 3.44 (s, 3H), 4.83 (s, 1H), 7.12 (m, 1H), 7.16 (t, 1H), 7.33 (dd, 1H), 9.52 (bs, 1H), 9.63 (s, 1H). MS (ESI-) m/z 420 (M-H)⁻. Anal. (C₁₉H₁₉N₃BrFO₂): C, H, N.

- **4.4.19. 4-(3-Bromo-4-fluorophenyl)-1-methyl-1,2,4,7,8,9-hexahydropyrano[4,3-b]pyrazolo[4,3-e]pyridine-3,5-dione (20).** Dihydro-2H-pyran-2,4(3H)-dione (0.11 g, 1 mmol), 3-bromo-4-fluoro-benzaldehyde (0.2 g, 1 mmol) and 5-amino-1-methyl-1,2-dihydropyrazol-3-one (0.12 g, 1 mmol) were processed as described in **6a** to provide 0.27 g of **20** as a tan solid ¹H NMR (DMSO- d_6) δ 2.55 (m, 1H), 2.8 (m, 1H), 3.5 (s, 3H), 4.22 (m, 2H), 4.86 (s, 1H), 7.2 (m, 2H), 7.41 (dd, 1H), 9.49 (s, 1H), 9.92 (s, 1H). MS (ESI-) m/z 392 (M-H)⁻. Anal. (C₁₆H₁₃N₃BrFO₃·-C₂H₆O) C, H, N.
- **4.4.20. 4-(3-Bromo-4-fluorophenyl)-1-methyl-1,2,4,9-tetrahydropyrano[3,4-***b***]pyrazolo[4,3-***e***]pyridine-3,5(***6H***,8***H***)-dione (21).** 2*H*-Pyran-3,5(4*H*,6*H*)-dione (0.34 g, 3 mmol), 3-bromo-4-fluoro-benzaldehyde (0.61 g, 3 mmol), and 5-amino-1-methyl-1,2-dihydropyrazol-3-one (0.34 g, 3 mmol) in EtOH (6 mL) were processed as in **6a** to provide 0.55 g (46%) of **19** as a tan solid. ¹H NMR (DMSO- d_6) δ 3.5 (s, 3H), 4.1 (s, 2H), 4.53 (q, 2H), 4.98 (s, 1H), 7.18 (m, 1H), 7.21 (t, 1H), 7.4 (dd, 1H), 9.65 (bs, 1H), 10.52 (s, 1H). MS (ESI-) m/z 394,392 (M-H)⁻. Anal. (C₁₆H₁₃N₃BrFO₃) C, H, N.
- **4.4.21.** Ethyl 6-[(acetyloxy)methyl]-4-(3-bromo-4-fluorophenyl)-1-methyl-3-oxo-1,3,4,7-tetrahydroisoxazolo[3,4-b]pyridine-5-carboxylate (22). 3-Amino-2-methyl-5(2H)-isoxazolone (0.17 g, 1.5 mmol), ethyl 4-(acetyloxy)butanoate 11 (0.28 g, 1.5 mmol) in EtOH (4 mL) were heated at 80 °C for 24 h in a sealed tube. The reaction mixture was evaporated under reduced pressure and the residue chromatographed on silica gel eluting with 5% EtOH/CH₂Cl₂ to provide 22 (0.2 g). ¹H NMR (DMSO- d_6) δ 1.03 (t, 3H), 2.1 (s, 3H), 3.23 (s, 3H), 3.82 (q, 2H), 4.8 (s, 1H), 5.12 (q, 2H), 7.25 (m, 1H), 7.3 (t, 1H), 7.48 (dd, 1H), 10.2 (s, 1H). MS (ESI-) m/z 467 (M-H)⁻.
- 4.4.22. 4-(3-Bromo-4-fluorophenyl)-1-methyl-4,8-dihydro-1H,3H-furo[3,4-b]isoxazolo[4,3-e]pyridine-3,5(7H)-dione (23). The intermediate diester 22 (0.16 g) in MeOH (10 mL) was treated with K₂CO₃ (0.05 g) at ambient temperature. After stirring for 1 h, the solvent was evaporated under reduced pressure and the residue was chromatographed on silica gel eluting with 5% EtOH/CH₂Cl₂ to provide 23 (0.04 g). ¹H NMR (DMSO- d_6) δ 3.28 (s, 3H), 4.71 (s, 1H), 4.96 (q, 2H), 7.32 (m, 2H), 7.58 (dd, 1H), 11.18 (bs, 1H). MS (ESI-) m/z 381 (M-H)⁻. Anal. (C₁₅H₁₀BrFN₂O₄) C, H, N.
- **4.4.23. 4-(3-Bromo-4-fluorophenyl)-1-methyl-4,7,8,9-tetrahydroisoxazolo**] **3,4-b]quinoline-3,5(1H,6H)-dione (24).** 3-Amino-2-methyl-5(2H)-isoxazolone (0.086 g, 0.75 mmol), 3-bromo-4-fluorobenzaldehyde (0.15 g, 0.075 mmol), and 1,3-cyclohexanedione (0.084 g, 0.75 mmol) were processed as in **6a** to provide **24** as a tan solid (0.09 g). ^{1}H NMR (DMSO- d_{6}) δ 1.95 (m, 2H), 2.27 (m, 2H), 2.63 (m, 2H), 3.24 (s, 3H), 4.69 (s, 1H), 7.2 (m, 1H), 7.23 (t, 1H), 7.45 (dd, 1H), 10.2 (s, 1H). S (ESI) m/z 393 (M-H) $^{-}$. Anal. (C₁₇ H_{14} N₂BrFO₃) C, H, N.

- **4.4.24. 4-(3-Bromo-4-fluorophenyl)-1,6,6-trimethyl-4,7,8,9-tetrahydroisoxazolo[3,4 b|quinoline 3,5(1H,6H) dione (25). 3-Amino-2-methyl-5(2H)-isoxazolone (0.11 g, 1 mmol), 3-bromo-4-fluoro-benzaldehyde (0.2 g, 1 mmol), and 4,4-dimethyl-1,3-cyclohexanedione (0.11 g, 1 mmol) in EtOH (3 mL) were treated as in 6a.** The reaction mixture was allowed to cool to ambient temperature and evaporated under reduced pressure. The residue was chromatographed eluting with 5%EtOH/CH₂Cl₂ to yield 0.13 g of **25** as a white solid. 1 H NMR (DMSO- 1 d) 1 d 0.92 (s, 3H), 1.0 (s, 3H), 1.82 (t, 2H), 2.65 (m, 2H), 3.22 (s, 3H), 4.67 (s, 1H), 7.21 (m, 2HC, 7.43 (dd, 1H), 10.39 (s, 1H). MS (ESI) 1 m/z 419,421 (M-H) $^{-}$. Anal. (C₁₉H₁₈BrFN₂O₃) C, H, N.
- **4.4.25.** (*R*)(+)-4-(3-Bromo-4-fluorophenyl)-1,6,6-trimethyl-4,7,8,9-tetrahydroisoxazolo[3,4-*b*]quinoline-3,5(1*H*,6*H*)-dione (26) and (*S*)(-)-4-(3-bromo-4-fluorophenyl)-1,6,6-trimethyl-4,7,8,9-tetrahydroisoxazolo[3,4-*b*]quinoline-3,5(1*H*,6*H*)-dione (27). Dihydropyridoisoxazolone 25 (0.25 g) was separated on chiral column (Chiracel AS 4.6×250 mm using 90:10 hexane:EtOH at 1 mL/min) to provide 0.1 g of enantiomer 26 (retention time of 17 min). $[\alpha]_D^{23}$ +93.33° (DMSO); ¹H NMR (DMSO- d_6) δ 0.92 (s, 3H), 1.0 (s, 3H), 1.82 (t, 2H), 2.65 (m, 2H), 3.22 (s, 3H), 4.67 (s, 1H), 7.21 (m, 2HC, 7.43 (dd, 1H), 10.39 (s, 1H). MS (ESI) m/z 419,421 (M-H)⁻. Anal. (C₁₉H₁₈BrFN₂O₃) C, H, N.

Continued elution of the column provided 0.08 g of **27** (retention time 28.5 min). $[\alpha]_D^{23}$ -96.36° (DMSO); ¹H NMR (DMSO- d_6) δ 0.92 (s, 3H), 1.0 (s, 3H), 1.82 (t, 2H), 2.65 (m, 2H), 3.22 (s, 3H), 4.67 (s, 1H), 7.21 (m, 2HC, 7.43 (dd, 1H), 10.39 (s, 1H). MS (ESI) m/z 419,421 (M-H)⁻. Anal. (C₁₉H₁₈BrFN₂O₃) C, H, N.

- **4.4.26. 4-(3-Bromo-4-fluorophenyl)-1-methyl-4,9-dihydro- 1***H* **isoxazolo**[**3,4 -** *b*]**pyrano**[**4,3 -** *e*]**pyridine 3,5**(*6H,8H*)**-dione (28).** 3-Amino-2-methyl-5(2*H*)-isoxazolone (0.11 g, 1 mmol), 3-bromo-4-fluoro-benzaldehyde (0.2 g, 1 mmol), and 2*H*-pyran-3,5(4*H*,6*H*)-dione (0.11 g, 1 mmol) were treated as in **6a** to provide **28** as a white solid (0.09 g). 1 H NMR (DMSO- 1 d) 1 d 3.27 (s, 3H), 4.05 (s, 2H), 4.57 (q, 2H), 4.78 (s, 1H), 7.28 (m, 2H), 7.54 (d, 1H), 10.77 (s, 1H). MS (ESI) $^{m/z}$ 395 (M-H)⁻. Anal. (1 d-H₁₂BrFN₂O₄) C, H, N.
- 4.4.27. (*S*)(-)4-(3-Bromo-4-fluorophenyl)-1-methyl-4,9-dihydro 1*H* isoxazolo[3,4 *b*]pyrano[4,3 *e*]pyridine 3,5(6*H*, 8*H*)-dione (29) and (*R*)(+)4-(3-bromo-4-fluorophenyl)-1-methyl 4,9 dihydro 1*H* isoxazolo[3,4 *b*]pyrano[4,3 *e*]pyridine-3,5(6*H*,8*H*)-dione (30). Racemic 27 (0.25 g) was separated on Chiracel AS column eluting with 20% of EtOH/hexane to provide 0.06 g of 29 as the less polar enantiomer. [α]²³ + 83.33° (DMSO); ¹H NMR (DMSO- d_6) δ 3.27 (s, 3H), 4.05 (s, 2H), 4.57 (q, 2H), 4.78 (s, 1H), 7.28 (m, 2H), 7.54 (d, 1H), 10.77 (s, 1H); MS (ESI) *m*/*z* 395 (M-H)⁻. Anal. (C₁₆H₁₂BrFN₂O₄) C, H, N.

Continued elution of column afforded 0.07 g of **30** as more polar enentiomer [α]_D²³ -83.07° (DMSO); ¹H NMR (DMSO- d_6) δ 3.27 (s, 3H), 4.05 (s, 2H), 4.57 (q, 2H), 4.78

- (s, 1H), 7.28 (m, 2H), 7.54 (d, 1H), 10.77 (s, 1H); MS (ESI) m/z 395 (M-H)⁻. Anal. (C₁₆H₁₂BrFN₂O₄) C, H, N.
- **4.4.28.** 1-Methyl 4 [4 (trifluoromethoxy)phenyl] 1,2,4, 6,7,8-hexahydrocyclopenta[b|pyrazolo[4,3-e|pyridine-3,5-dione (31). 4-Trifluoromethoxybenzaldehyde (0.28 g, 1.5 mmol), 1,3-cyclopentanedione (0.15 g, 1.5 mmol), and 5-amino-1-methyl-1,2-dihydropyrazol-3-one (0.17 g, 1.5 mmol) were processed as in **6a** to provide 0.15 g of **31**. 1 H NMR (DMSO- d_{6}) δ 2.3 (t, 2H), 2.68 (m, 2H), 3.49 (s, 3H), 4.72 (s, 1H), 7.18 (d, 2H), 7.23 (d, 2H), 9.5 (bs, 1H) 10.37 (s, 1H); MS (ESI-) m/z 364 (M-H)⁻. Anal. (C₁₇H₁₄N₃F₃O₃·0.25H₂O) C, H, N.
- **4.4.29. 4-(3-Bromo-4-methylphenyl)-1-methyl-1,2,4,6,7,8-hexahydrocyclopenta**[*b*]**pyrazolo**[**4,3-***e*]**pyridine-3,5-dione (32). 4-**Methyl-3-bromobenzaldehyde (0.3 g, 1.5 mmol), 20 1,3-cyclopentanedione (0.15 g, 1.5 mmol), and 5-amino-1-methyl-1,2-dihydropyrazol-3-one (0.17 g, 1.5 mmol) were processed as in **6a** to provide 0.34 g of **32**. 1 H NMR (DMSO- d_6) δ 2.27 (s, 3H), 2.29 (t, 2H), 2.67 (m, 2H), 3.5 (s, 3H), 4.63 (s, 1H), 7.04 (dd, 1H), 7.18 (d, 1H), 7.29 (ds, 1H), 9.51 (bs, 1H), 10.37 (s, 1H); MS (ESI-m/z 361 (M-H)⁻. Anal. (C₁₇H₁₆N₃BrO₂) C, H, N.
- **4.4.30. 4-[4-Fluoro-3-(trifluoromethyl)phenyl]-1-methyl-1,2,4,6,7,8 hexahydrocyclopenta**[*b*]**pyrazolo**[**4,3 e**]**pyridine-3,5-dione (33). 4-**Fluoro-3-trifluoromethylbenzaldehyde (0.28 g, 1.5 mmol), 1,3-cyclopentanedione (0.15 g, 1.5 mmol), and 5-amino-1-methyl-1,2-dihydropyrazol-3-one (0.17 g, 1.5 mmol) were processed as in **6a**. The reaction was cooled and the resulting precipitate was filtered off to provide 0.35 g of **33**. 1 H NMR (DMSO- d_6) δ 2.21 (m, 2H), 2.7 (m, 2H), 3.51 (s, 3H), 4.8 (s, 1H), 7.35 (t, 1H), 7.45 (m, 1H), 7.55 (d, 1H), 9.6 (bs, 1H), 10.48 (s, 1H); MS (ESI-) m/z 366 (M-H)⁻. Anal. (C₁₇H₁₃N₃F₄O₂) C, H, N.
- **4.4.31. 4-(4-Chloro-3-nitrophenyl)-1-methyl-1,2,4,6,7,8-hexahydrocyclopenta**[*b*]**pyrazolo**[**4,3-***e*]**pyridine-3,5-dione (34). 4-**Chloro-3-nitrobenzaldehyde (0.27 g, 1.5 mmol), 1,3-cyclopentanedione (0.15 g, 1.5 mmol), and 5-amino-1-methyl-1,2-dihydropyrazol-3-one (0.17 g, 1.5 mmol) were treated as in **6a**. The reaction was cooled and the resulting precipitate was collected to provide 0.3 g of **34**. ¹H NMR (DMSO- d_6) δ 2.3 (t, 2H), 2.68 (m, 2H), 3.5 (s, 3H), 4.81 (s, 1H), 7.48 (dd, 1H), 7.6 (d, 1H), 7.78 (d, 1H), 9.61 (bs, 1H), 10.49 (s, 1H); MS (ESI-) m/z 359 (M-H)⁻. Anal. (C₁₆H₁₃N₄ClO₄) C, H, N.
- **4.4.32. 4-(4-Fluoro-3-iodophenyl)-1-methyl-1,2,4,6,7,8-hexahydrocyclopenta**[*b*]**pyrazolo**[**4,3-***e***]pyridine-3,5-dione (35). 4-**Fluoro-3-iodobenzaldehyde²¹ (0.25 g, 1.0 mmol), 1,3-cyclopentanedione (0.1 g, 1.0 mmol) and 5-amino-1-methyl-1,2-dihydropyrazol-3-one (0.11 g, 1.0 mmol) were treated as in **6a** to provide 0.27 g of **35.** 1 H NMR (DMSO- d_6) δ 2.3 (m, 2H), 2.68 (m, 2H), 3.5 (s, 3H), 4.67 (s, 1H), 7.1 (t, 1H), 7.15 (m, 1H), 7.52 (dd, 1H), 9.52 (s, 1H), 10.4 (s, 1H); MS (ESI-) m/z 424 (M-H)⁻. Anal. ($C_{16}H_{13}N_3$ FIO₂) C, H, N.
- 4.4.33. 4-(3,4-Dichlorophenyl)-1-methyl-1,2,4,6,7,8-hexa-hydrocyclopenta[*b*]pyrazolo[4,3-*e*]pyridine-3,5-dione (36).

- 3,4-Dichlorobenzaldehyde (0.17 g, 1.0 mmol), 1,3-cyclopentanedione (0.1 g, 1.0 mmol), and 5-amino-1-methyl-1,2-dihydropyrazol-3-one (0.11 g, 1.0 mmol) were processed as described in **6a**. The reaction was cooled and the resulting precipitate was collected to provide 0.24 g of **36**. $^1\mathrm{H}$ NMR DMSO- d_6) δ 2.28 (t, 2H), 2.68 (m, 2H), 3.5 (s, 3H), 4.7 (s, 1H), 7.13 (dd, 1H), 7.33 (d, 1H), 7.49 (d, 1H), 9.58 (s, 1H), 10.45 (s, 1H); MS (ESI-) m/z 348 (M–H)⁻. Anal. (C₁₆H₁₃N₃Cl₂O₂) C, H, N.
- **4.4.34. 4-(2,1,3-Benzoxadiazol-5-yl)-1-methyl-1,2,4,6,7,8-hexahydrocyclopenta**[*b*]**pyrazolo**[**4,3-***e***]pyridine-3,5-dione (37).** 2,1,3-Benzoxadiazole-5-carboxaldehyde (0.15 g, 1.0 mmol), 21 1,3-cyclopentanedione (0.1 g, 1.0 mmol), and 5-amino-1-methyl-1,2-dihydropyrazol-3-one (0.11 g, 1.0 mmol) were processed as in **6a**. The reaction was cooled and the resulting precipitate was collected to provide 0.17 g of **37**. 1 H NMR (DMSO- d_{6}) δ 2.32 (m, 2H), 2.71 (m, 2H), 3.51 (s, 3H), 4.87 (s, 1H), 7.5 (dd, 1H), 7.6 (s, 1H), 7.9 (d, 1H), 9.61 (bs, 1H), 10.52 (s, 1H); MS (ESI-) m/z 322 (M-H)⁻. Anal. (C₁₆H₁₃N₅O₃) C, H, N.
- 4.4.35. 4-(3-Bromo-4-methylphenyl)-1-methyl-4,9-dihydro-1H-isoxazolo[3,4-b]pyrano[4,3-e]pyridine 3,5(6H,8H)-dione (38). 3-Amino-2-methyl-5(2H)-isoxazolone (0.11 g, 1 mmol), 4-methyl-3-bromobenzaldehyde²⁰ (0.2 g, 1 mmol), and 2H-pyran-3,5(4H,6H)-dione (0.11 g, 1 mmol) were processed as in 6a. The reaction mixture was allowed to cool to ambient temperature and was evaporated under reduced pressure. The residue was chromatographed eluting with EtOAc:HCO₂H: H₂O (19:0.5:0.5) to provide 38 (0.07 g). ^{1}H NMR (DMSO- ^{1}H) ^{1}H 0.5 (s, 3 ^{1}H), 7.11 (dd, 1 ^{1}H), 7.23 (d, 1 ^{1}H), 7.47 (d, 1 ^{1}H), 10.8 (s, 1 ^{1}H); MS (ESI) ^{1}H 2 389 (M- ^{1}H 3)- Anal. (^{1}H 15, ^{1}H 26O C, ^{1}H 30 C, ^{1}H 30 C, ^{1}H 31 N₂2BrO₄·0.5C₂ ^{1}H 6O) C, ^{1}H 50 N.
- **4.4.36. 4-[4-Fluoro-3-(trifluoromethyl)phenyl]-1-methyl-4,9-dihydro-1***H***-isoxazolo[3,4-b]pyrano[4,3-e]pyridine-3,5 (6***H***,8***H***)-dione (39).** 3-Amino-2-methyl-5(2*H*)-isoxazolone (0.11 g, 1 mmol), 4-fluoro-3-trifluromethylbenzaldehyde and 2*H*-pyran-3,5(4*H*,6*H*)-dione (0.11 g, 1 mmol) were processed as in **6a**. The reaction mixture was allowed to cool to ambient temperature and was evaporated under reduced pressure. The residue was chromatographed on silica gel eluting with EtOAc:H-CO₂H:H₂O (19:0.5:0.5) to yield **39** (0.08 g) ¹H NMR (DMSO- d_6) δ 3.28 (s, 3H), 4.07 (s, 2H), 4.58 (q, 2H), 4.87 (s, 1H), 7.42 (t, 1H), 7.59 (m, 2H), 10.8 (s, 1H); MS (ESI) m/z 383 (M-H)⁻. Anal. (C₁₆H₁₂N₂F₄O₄) C, H, N.
- **4.4.37. 4-(4-Chloro-3-nitrophenyl)-1-methyl-4,9-dihydro- 1***H* **-isoxazolo**[**3,4 -** *b*]**pyrano**[**4,3 -** *e*]**pyridine -3,5**(*6H,8H*) **-dione (40).** 3-Amino-2-methyl-5(2H)-isoxazolone (0.085 g, 0.75 mmol), 3-nitro-4-chlorobenzaldehyde (0.14 g, 0.75 mmol) and 2H-pyran-3,5(4H,6H)-dione (0.085 g, 0.75 mmol) were processed as in **6a** to provide **40** (0.09 g). 1 H NMR (DMSO- d_{6}) δ 3.28 (s, 3H), 4.06 (s, 2H), 4.58 (s, 2H), 4.88 (s, 1H), 7.6 (dd, 1H), 7.7 (d, 1H), 7.9 (d, 1H), 10.8 (s, 1H); MS (ESI) m/z 376 (M-H)⁻. Anal. (C₁₆H₁₂N₃ClO₆) C, H, N.

- **4.4.38. 4-(4-Fluoro-3-iodophenyl)-1-methyl-4,9-dihydro-1H-isoxazolo[3,4-***b***]pyrano[4,3-***e***]pyridine 3,5**(*6H*,8*H*) **dione (41).** 3-Amino-2-methyl-5(2*H*)-isoxazolone (0.086 g, 0.75 mmol), 4-fluoro-3-iodobenzaldehyde²¹ (0.19 g, 0.75 mmol) and 2*H*-pyran-3,5(4*H*,6*H*)-dione (0.085 g, 0.75 mmol) were processed as in **6a**. The residue was chromatographed eluting with 5% MeOH/CH₂Cl₂ to provide **41** (0.03 g). 1 H NMR (DMSO- d_6) δ 3.23 (s, 3H), 4.06 (s, 2H), 4.58 (q, 2H), 4.72 (s, 1H), 7.18 (t, 1H), 7.25 (m, 1H), 7.63 (dd, 1H), 10.9 (s, 1H); MS (ESI) m/z 441 (M-H)⁻. Anal. (C₁₆H₁₂N₂FIO₄) C, H, N.
- **4.4.39.** 3-(1-Methyl-3,5-dioxo-3,4,5,6,8,9-hexahydro-1H-isoxazolo]3,4 b|pyrano]4,3 e|pyridin 4 y|)benzonitrile (42). 3-Amino-2-methyl-5(2H)-isoxazolone (0.085 g, 0.75 mmol), 3-cyanobenzaldehyde (0.14 g, 0.75 mmol) and 2H-pyran-3,5(4H,6H)-dione (0.085 g, 0.75 mmol) were processed as in **6a**. The residue was chromatographed eluting with 5% MeOH/CH₂Cl₂ to provide **42** (0.09 g) as a tan solid. ^{1}H NMR (DMSO- d_6) δ 3.28 (s, 3H), 4.05 (s, 2H), 4.59 (q, 2H), 4.81 (s, 1H), 7.5 (t, 1H), 7.6 (m, 1H), 7.62 (m, 1H), 7.64 (d, 1H), 10.8 (s, 1H); MS (ESI) m/z 322 (M-H) $^-$.Anal. (C₁₇H₁₃N₃O₄·0.25H₂O) C, H, N.
- **4.4.40. 4-(2,1,3-Benzoxadiazol-5-yl)-1-methyl-4,9-dihydro-1H-isoxazolo[3,4-***b***]pyrano[4,3-***e***]pyridine 3,5**(*6H,8H*) **dione (43).** 3-Amino-2-methyl-5(2H)-isoxazolone (0.11 g, 1 mmol), 2,1,3-benzoxadiazole-5-carboxaldehyde²² (0.15 g, 1 mmol), and 2*H*-pyran-3,5(4*H*,6*H*)-dione (0.11 g, 1 mmol) were processed as in **6a** to provide **43** (0.09 g). 1 H NMR (DMSO- d_6) δ 3.28 (s, 3H), 4.08 (s, 2H), 4.6 (q, 2H), 4.92 (s, 1H), 7.62 (dd, 1H), 7.76 (s, 1H), 8.0 (dd, 1H), 10.8 (s, 1H); MS (ESI) m/z 339 (M-H)⁻. Anal. (C₁₆H₁₂N₄O₅) C, H, N.

References and notes

- 1. Li, J. H. Drug Rev. 1997, 15, 220.
- Chess-Williams, R. M.; Martin, S.W; Korstanje, C.; Chapple, C. R. Br. J. Urol. 1999, 83, 1050.
- 3. Zografos, P.; Li, J. H.; Kau, S. T. Pharmacology 1992, 45, 216.
- 4. Martin, S. W.; Radley, S. C.; Chess-Williams, R.;

- Korstanje, C.; Chapple, C. R. Br. J. Urology 1997, 80, 405.
- Butera, J. A.; Antane, M. M.; Antane, S. A.; Argentieri, T. M.; Freeden, C.; Graceffa, R. F.; Hirth, B. H.; Jenkins, D.; Lennox, J. R.; Matelan, E.; Norton, N. W.; Quagliato, D.; Sheldon, J. H.; Spinelli, W.; Warga, D.; Wojdan, A.; Woods, M. J. Med. Chem. 2000, 43, 1187.
- Gilbert, A. M.; Antane, M. M.; Argentieri, T. M.; Butera, J. A.; Francisco, G. D.; Freeden, C.; Gundersen, E. G.; Graceffa, R. F.; Herbst, D.; Hirth, B. H.; Lennox, J. R.; McFarlane, G.; Norton, N. W.; Quagliato, D.; Sheldon, J. H.; Warga, D.; Wojdan, A.; Woods, M. 2000, 43, 1203
- Carroll, W. A.; Agrios, K. A.; Altenbach, R. J.; Buckner, S. A.; Chen, Y.; Coghlan, M. J.; Daza, A.V.; Drizin, I.; Gopalakrishnan, M.; Henry, R. F.; Kort, M. E.; Kym, P. R.; Milicic, I.; Smith, J. C.; Tang, R.; Turner, S. C.; Whiteaker, K.L.; Sullivan, J. P.; Zhang, H. J. Med. Chem. (in press).
- Baarnhielm, C.; Skanberg, I.; Borg, K. O. *Xenobiotica* 1984, 14, 719.
- Baarnhielm, C.; Hansson, G. Biochem. Pharmac. 1986, 35, 1419.
- 10. Taylor, C.; Barton, J. J. Am. Chem. Soc. 1959, 81, 2448.
- Weisberger, A.; Porter, A. J. Am. Chem. Soc. 1944, 66, 1849
- Barbieri, W.; Bernardi, L.; Coda, S.; Colo, V.; Palamidessi, G. Tetrahedron 1967, 23, 4395.
- Carroll, W. A.; Agrios, K. A.; Altenbach, R. J.; Drizin, I.; Kort, M. E. US 6, 190, 140 B1 2001.
- 14. Nakagawa, S. Heterocycles 1979, 13, 477.
- D'Angelo, J.; Gomez-Pardo, D. Tetrahedron Lett. 1991, 32, 3063.
- 16. Fehnel, E. J. Am. Chem. Soc. 1952, 74, 1569.
- Husbands, S.; Fraser, W.; Suckling, C. J.; Wood, H. C. S. Tetrahedron 1995, 51, 865.
- Gopalakrishnan, M.; Whitaekar, K.; Molinari, E.; Davis-Taber, R.; Scott, V.; Shieh, C. C.; Buckner, S.; Milicic, I.; Cain, J.; Postl, S.; Sullivan, J.; Brioni, J. J. J. Pharm. Exp. Therap. 1999, 289, 551.
- Buckner, S. A.; Milicic, I.; Daza, A.; Davis-Taber, R.; Scott, V. E.; Sullivan, J. P.; Brioni, J. D. Eur. J. Pharmacol. 2000, 400, 287.
- 20. Pearson, J. Org. Chem. 1958, 23, 1412.
- Liu, G.; Xin, Z.; Pei, Z.; Hajduk, P. J.; Abad-Zapatero, C.; Hutchins, C. W.; Zhao, H.; Lubben, T. H.; Ballaron, S. J.; Haasch, D. L.; Kaszubska, W.; Rondinone, C. M.; Trevillyan, J. M.; Jirousek, M. R. J. Med. Chem. 2003, 46, 4232.
- Gasco, A. M.; Ermondi, G.; Fruttero, R.; Gasco, A. Eur. J. Med. Chem. 1996, 31, 3.